請輸入關鍵字
請輸入關鍵字
訂購
*國家
中國
美國
中國香港
中國澳門
中國台灣
阿爾巴尼亞
阿爾及利亞
阿根廷
阿拉伯聯合酋長國
阿魯巴
阿曼
阿塞拜疆
阿森鬆島
埃及
埃塞俄比亞
愛爾蘭
愛沙尼亞
安道爾
安哥拉
安圭拉
安提瓜和巴布達
奧地利
奧蘭群島
澳大利亞
巴巴多斯
巴布亞新幾內亞
巴哈馬
巴基斯坦
巴拉圭
巴勒斯坦領土
巴林
巴拿馬
巴西
白俄羅斯
百慕大
保加利亞
北馬裏亞納群島
貝寧
比利時
冰島
波多黎各
波蘭
波斯尼亞和黑塞哥維那
玻利維亞
伯利茲
博茨瓦納
不丹
布基納法索
布隆迪
朝鮮
赤道幾內亞
丹麥
德國
迪戈加西亞島
東帝汶
多哥
多米尼加共和國
多米尼克
俄羅斯
厄瓜多爾
厄立特裏亞
法國
法羅群島
法屬波利尼西亞
法屬圭亞那
法屬南部領地
梵蒂岡
菲律賓
斐濟
芬蘭
佛得角
福克蘭群島
岡比亞
剛果(布)
剛果(金)
哥倫比亞
哥斯達黎加
格恩西島
格林納達
格陵蘭
格魯吉亞
古巴
瓜德羅普
關島
圭亞那
哈薩克斯坦
海地
韓國
荷蘭
荷屬加勒比區
荷屬聖馬丁
黑山
洪都拉斯
基裏巴斯
吉布提
吉爾吉斯斯坦
幾內亞
幾內亞比紹
加拿大
加納
加納利群島
加蓬
柬埔寨
捷克
津巴布韋
喀麥隆
卡塔爾
開曼群島
科科斯(基林)群島
科摩羅
科索沃
科特迪瓦
科威特
克羅地亞
肯尼亞
庫克群島
庫拉索
拉脫維亞
萊索托
老撾
黎巴嫩
立陶宛
利比裏亞
利比亞
聯合國
列支敦士登
留尼汪
盧森堡
盧旺達
羅馬尼亞
馬達加斯加
馬恩島
馬爾代夫
馬耳他
馬拉維
馬來西亞
馬裏
馬其頓
馬紹爾群島
馬提尼克
馬約特
毛裏求斯
毛裏塔尼亞
美國本土外小島嶼
美屬薩摩亞
美屬維爾京群島
蒙古
蒙特塞拉特
孟加拉國
秘魯
密克羅尼西亞
緬甸
摩爾多瓦
摩洛哥
摩納哥
莫桑比克
墨西哥
納米比亞
南非
南極洲
南喬治亞和南桑威奇群島
南蘇丹
瑙魯
尼加拉瓜
尼泊爾
尼日爾
尼日利亞
紐埃
挪威
諾福克島
帕勞
皮特凱恩群島
葡萄牙
日本
瑞典
瑞士
薩爾瓦多
薩摩亞
塞爾維亞
塞拉利昂
塞內加爾
塞浦路斯
塞舌爾
沙特阿拉伯
聖巴泰勒米
聖誕島
聖多美和普林西比
聖赫勒拿
聖基茨和尼維斯
聖盧西亞
聖馬丁島
聖馬力諾
聖皮埃爾和密克隆群島
聖文森特和格林納丁斯
斯裏蘭卡
斯洛伐克
斯洛文尼亞
斯瓦爾巴和揚馬延
斯威士蘭
蘇丹
蘇裏南
所羅門群島
索馬裏
塔吉克斯坦
泰國
坦桑尼亞
湯加
特克斯和凱科斯群島
特裏斯坦-達庫尼亞群島
特立尼達和多巴哥
突尼斯
圖瓦盧
土耳其
土庫曼斯坦
托克勞
瓦利斯和富圖納
瓦努阿圖
危地馬拉
委內瑞拉
文萊
烏幹達
烏克蘭
烏拉圭
烏茲別克斯坦
希臘
西班牙
西撒哈拉
新加坡
新喀裏多尼亞
新西蘭
匈牙利
休達及梅利利亞
敘利亞
牙買加
亞美尼亞
也門
伊拉克
伊朗
以色列
意大利
印度
印度尼西亞
英國
英屬維爾京群島
英屬印度洋領地
約旦
越南
讚比亞
澤西島
乍得
直布羅陀
智利
中非共和國
*省份
*城市
*姓名
*電話
*單位
*職位
*郵箱
*請輸入驗證碼
*驗證碼
B-hTLR8 mice
Strain Name
C57BL/6-Tlr8tm1(TLR8)Bcgen/Bcgen
Common Name  B-hTLR8 mice
Background C57BL/6 Catalog number  110104
Aliases  toll-like receptor 8, CD288
NCBI Gene ID
170744
mRNA expression analysis


from clipboard



Strain specific analysis of TLR8 gene expression in wild-type C57BL/6 mice mice and heterozygote hTLR8 mice by RT-PCR. Mouse Tlr8 mRNA was detectable in wild-type C57BL/6 mice (+/+). Human TLR8 mRNA was detectable only in heterozygote B-hTLR8 but not in wild-type mice.


Protein expression analysis in DC cells


from clipboard

Strain specific TLR8 expression analysis in homozygous B-hTLR8 mice by flow cytometry. Splenocytes were collected from WT and homozygous B-hTLR8 (H/H) mice, and analyzed by flow cytometry with species-specific anti-TLR8 antibody. Mouse TLR8 was detectable in WT mice and homozygous B-hTLR8 due to the anti-mouse TLR8 antibody cross-reacts with human TLR8. Human TLR8 was exclusively detectable in homozygous B-hTLR8 but not WT mice.


Protein expression analysis in DC cells


from clipboard

Strain specific TLR8 expression analysis in homozygous B-hTLR8 mice by flow cytometry. Splenocytes were collected from WT and homozygous B-hTLR8 (H/H) mice, and analyzed by flow cytometry with species-specific anti-TLR8 antibody. Mouse TLR8 was detectable in WT mice and homozygous B-hTLR8 due to the anti-mouse TLR8 antibody cross-reacts with human TLR8. Human TLR8 was exclusively detectable in homozygous B-hTLR8 but not WT mice.


Protein expression analysis in monocytes

from clipboard


Strain specific TLR8 expression analysis in homozygous B-hTLR8 mice by flow cytometry. Splenocytes were collected from WT and homozygous B-hTLR8 (H/H) mice, and analyzed by flow cytometry with species-specific anti-TLR8 antibody. Mouse TLR8 was detectable in WT mice and homozygous B-hTLR8 due to the anti-mouse TLR8 antibody cross-reacts with human TLR8. Human TLR8 was exclusively detectable in homozygous B-hTLR8 but not WT mice.


Protein expression analysis in monocytes

from clipboard


Strain specific TLR8 expression analysis in homozygous B-hTLR8 mice by flow cytometry. Splenocytes were collected from WT and homozygous B-hTLR8 (H/H) mice, and analyzed by flow cytometry with species-specific anti-TLR8 antibody. Mouse TLR8 was detectable in WT mice and homozygous B-hTLR8 due to the anti-mouse TLR8 antibody cross-reacts with human TLR8. Human TLR8 was exclusively detectable in homozygous B-hTLR8 but not WT mice.


Function assay



Function assay in homozygous B-hTLR8 mice by ELISA. TNFα, IFNγ and IL12p40 are important downstream cytokines in the NF-kb and IRF7 pathways.  Splenocytes were collected from WT and homozygous B-hTLR8 (H/H) mice stimulated with TLR8 agonists TLR8-506 and GS-9688 (Selgantolimod) in vitro, and analyzed by mouse TNFα, IFNγ and IL12p40 ELISA kit. TNFα, IFNγ and IL12p40 secretion were enhanced in homozygous B-hTLR8 mice compared to wild-type mice due to the selectively high binding affinity to human TLR8, and The stimulation had dose-dependent effect with GS-9688 concentration. 


Analysis of leukocytes cell subpopulation in spleen (6-week-old)


from clipboard


Analysis of spleen leukocyte subpopulations by FACS. Splenocytes were isolated from female C57BL/6 and B-hTLR8 mice (n=3, 6-week-old). Flow cytometry analysis of the splenocytes was performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live cells were gated for the CD45+ population and used for further analysis as indicated here. B. Results of FACS analysis. Percent of T cells, B cells, NK cells, dendritic cells, granulocytes, monocytes and macrophages in homozygous B-hTLR8 mice were similar to those in the C57BL/6 mice, demonstrating that TLR8 humanized does not change the overall development, differentiation or distribution of these cell types in spleen. 


Analysis of T cell subpopulation in spleen (6-week-old)


from clipboard



Analysis of spleen T cell subpopulations by FACS. Splenocytes were isolated from female C57BL/6 and B-hTLR8 mice (n=3, 6-week-old).  Flow cytometry analysis of the splenocytes was performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live CD45+ cells were gated for TCRβ+ T cell population and used for further analysis as indicated here. B. Results of FACS analysis. The percent of CD8+ T cells , CD4+ T cells and Tregs  in homozygous B-hTLR8 mice were similar to those in the C57BL/6 mice, demonstrating that TLR8 humanized does not change the overall development, differentiation or distribution of these cell types in spleen. 


Analysis of leukocytes cell subpopulation in lymph node (6-week-old)

from clipboard



Analysis of LNs leukocyte subpopulations by FACS. LNs (Lymph nodes) were isolated from female C57BL/6 and B-hTLR8 mice (n=3, 6-week-old). Flow cytometry analysis of the LNs was performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live cells were gated for the CD45+ population and used for further analysis as indicated here. B. Results of FACS analysis. Percent of T cells, B cells, NK cells in homozygous B-hTLR8 mice were similar to those in the C57BL/6 mice, demonstrating that TLR8 humanized does not change the overall development, differentiation or distribution of these cell types in LNs. 


Analysis of T cell subpopulation in lymph node (6-week-old)


from clipboard



Analysis of LNs T cell subpopulations by FACS. LNs (Lymph nodes) were isolated from female C57BL/6 and B-hTLR8 mice (n=3, 6-week-old).  Flow cytometry analysis of the LNs was performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live CD45+ cells were gated for TCRβ+T cell population and used for further analysis as indicated here. B. Results of FACS analysis. The percent of CD8+ T cells , CD4+ T cells and Tregs  in homozygous B-hTLR8 mice were similar to those in the C57BL/6 mice, demonstrating that TLR8 humanized does not change the overall development, differentiation or distribution of these cell types in LNs. 


Analysis of leukocytes cell subpopulation in blood (6-week-old)


from clipboard



Analysis of blood leukocyte subpopulations by FACS. Blood were isolated from female C57BL/6 and B-hTLR8 mice (n=3, 6-week-old). Flow cytometry analysis of the blood was performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live cells were gated for the CD45+ population and used for further analysis as indicated here. B. Results of FACS analysis. Percent of T cells, B cells, NK cells, granulocytes, monocytes and macrophages in homozygous B-hTLR8 mice were similar to those in the C57BL/6 mice, demonstrating that TLR8 humanized does not change the overall development, differentiation or distribution of these cell types in blood. 

Analysis of T cell subpopulation in blood (6-week-old)

from clipboard



Analysis of blood T cell subpopulations by FACS. Blood were isolated from female C57BL/6 and B-hTLR8 mice (n=3, 6-week-old).  Flow cytometry analysis of the blood was performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live CD45+ cells were gated for CD3+ T cell population and used for further analysis as indicated here. B. Results of FACS analysis. The percent of CD4+ T cells, CD8+ T cells, and Tregs in homozygous B-hTLR8 mice were similar to those in the C57BL/6 mice, demonstrating that introduction of hTLR8 in place of its mouse counterpart does not change the overall development, differentiation or distribution of these T cell subtypes in blood. 


Analysis of leukocytes cell subpopulation in spleen


from clipboard



Analysis of spleen leukocyte subpopulations by FACS. Splenocytes were isolated from female C57BL/6 and B-hTLR8 mice (9-week old(n=3) and 28-week old (n=5)). Flow cytometry analysis of the splenocytes was performed to assess leukocyte subpopulations. Results of FACS analysis. Percent of T cells, B cells, NK cells, dendritic cells, granulocytes, monocytes and macrophages in homozygous B-hTLR8 mice were similar to those in the C57BL/6 mice, demonstrating that TLR8 humanized does not change the overall development, differentiation or distribution of these cell types in spleen. 

Analysis of T cell subpopulation in spleen

from clipboard



Analysis of spleen T cell subpopulations by FACS. Splenocytes were isolated from female C57BL/6 and B-hTLR8 mice (9-week old(n=3) and 28-week old (n=5)). Flow cytometry analysis of the splenocytes was performed to assess leukocyte subpopulations. Results of FACS analysis. The percent of CD8+ T cells , CD4+ T cells and Tregs  in B-hTLR8 mice were similar to those in C57BL/6 mice, demonstrating that TLR8 humanized does not change the overall development, differentiation or distribution of these cell types in spleen. 

Analysis of leukocytes cell subpopulation in blood

from clipboard



Analysis of blood leukocyte subpopulations by FACS. Blood were isolated from female C57BL/6 and B-hTLR8 mice (9-week old(n=3) and 28-week old (n=5)). Flow cytometry analysis of the blood was performed to assess leukocyte subpopulations. Results of FACS analysis. of T cells, B cells, NK cells, dendritic cells, monocytes and macrophages in homozygous B-hTLR8 mice were similar to those in the C57BL/6 mice. Compared with the C57BL/6 mice, the percent of granulocytes in B-hTLR8 mice were changed at the age of 28 weeks. It suggests that TLR8 humanized may change the development, differentiation or distribution of granulocytes in blood. 

Analysis of T cell subpopulation in blood

from clipboard



Analysis of blood T cell subpopulations by FACS. Blood were isolated from female C57BL/6 and B-hTLR8 mice (9-week old(n=3) and 28-week old (n=5)). Flow cytometry analysis of the blood was performed to assess leukocyte subpopulations. Results of FACS analysis. The percent of CD4+ T cells, CD8+ T cells, and Tregs in homozygous B-hTLR8 mice were similar to those in the C57BL/6 mice, demonstrating that introduction of hTLR8 in place of its mouse counterpart does not change the overall development, differentiation or distribution of these T cell subtypes in blood. 

Spleen weight

from clipboardAnalysis of spleen weight of B-TLR8 mice in different ages. Compared with age matched C57BL/6 mice, there was no significant change in spleen weight of 9-week-old B-hTLR8 mice. Compared with age matched C57BL/6 mice, the spleen weight of 28 week old B-hTLR8 mice increased, but there was no significant difference.

Liver weight

from clipboardAnalysis of liver weight of B-TLR8 mice in different ages. Compared with age matched C57BL/6 mice, there was no significant change in liver weight of 9-week-old B-hTLR8 mice. Compared with age matched C57BL/6 mice, there was no significant change in liver weight of 28-week-old B-hTLR8 mice. 


In vivo efficacy of anti-human TROP2 antibody conjugated TLR8 agonists


from clipboard



Antitumor activity of TROP2 antibody conjugated TLR8 agonists in B-hTLR8 mice. (A) Anti-human TROP2 antibody conjugated TLR8 agonists inhibited MC38 tumor growth in B-hTLR8 mice. Murine colon cancer B-hTROP2 MC38 plus cells were subcutaneously implanted into homozygous B-hTLR8 mice (female, 9 week-old, n=8). Mice were grouped according to body weight differences, at which time they were treated antibody conjugates with different doses. (B) Body weight changes during treatment. As shown in panel A, anti-human TROP2 antibody conjugated TLR8 agonists were efficacious in controlling tumor growth in B-hTLR8 mice, demonstrating that B-hTLR8 mouse model is a promising model for preclinical in vivo studies to evaluate antibodies conjugated TLR8 agonists. Values are expressed as mean ± SEM. 

In vivo efficacy of collagen-induced arthritis model in B-hTLR8 mice



from clipboardIn vivo efficacy of collagen-induced arthritis model in B-hTLR8 mice. 96 animals were randomly divided into 2 groups according to their body weight, 8 animals in group A and 88 animals in Group B. On day 0, PBS was injected subcutaneously in group A. CⅡ emulsion was injected subcutaneously in group B. On day 21, animals in group A were injected with PBS; animals of group B were injected with CⅡ emulsion. When the average clinical score of the animal in group B is more than 0, they were grouped again, and these animals are divided into 5 groups, each with 8 animals, respectively marked as G2~G6. G1 group was group A with the same number of animals, it is a non-CIA control group. The G2 is the vehicle group(model group), G3 is 80 mg/kg positive control drug group, G4 is the low dose TLR8 targeted drug group, G5 is the medium dose TLR8 targeted drug group, G6 is the high dose TLR8 targeted drug group. (A) Weight changes. Percentage of animal weight change per day compared with Day 0. (B) Animal clinical score on Day 21 after dosing. As test article group, it was observed that the score average was lower in G3-G6 compared to that in vehicle-treated group(G2). Especially, G3 and G6 showed significant difference from G2. (C) The pathology statistical score in H&E staining. Microscopically, no lesion was found in G1. Different degrees of subcutaneous mixed inflammatory cell infiltration, joint synovitis and/or pannus formation, ankle and/or phalangeal joint cartilage and bone tissue destruction were observed in G2. G6 had a certain improvement on related lesions of arthritic animal model. Individual data of microscopic findings and photos were presented in Appendix.